73 research outputs found

    FROM RUIN TO BANKRUPTCY FOR COMPOUND POISSON SURPLUS PROCESSES

    Get PDF
    In classical risk theory, the infinite-time ruin probability of a surplus process Ct is calculated as the probability of the process becoming negative at some point in time. In this paper, we consider a relaxation of the ruin concept to the concept of bankruptcy, according to which one has a positive surplus-dependent probability to continue despite temporary negative surplus. We study the resulting bankruptcy probability for the compound Poisson risk model with exponential claim sizes for different bankruptcy rate functions, deriving analytical results, upper and lower bounds as well as an efficient simulation method. Numerical examples are given and the results are compared with the classical ruin probabilities. Finally, it is illustrated how the analysis can be extended to study the discounted penalty function under this relaxed ruin criterio

    A note on moments of dividends

    Get PDF
    We reconsider a formula for arbitrary moments of expected discounted dividend payments in a spectrally negative Lévy risk model that was obtained in Renaud and Zhou (2007, [4]) and in Kyprianou and Palmowski (2007, [3]) and extend the result to stationary Markov processes that are skip-free upward

    Informed censoring: the parametric combination of data and expert information

    Full text link
    The statistical censoring setup is extended to the situation when random measures can be assigned to the realization of datapoints, leading to a new way of incorporating expert information into the usual parametric estimation procedures. The asymptotic theory is provided for the resulting estimators, and some special cases of practical relevance are studied in more detail. Although the proposed framework mathematically generalizes censoring and coarsening at random, and borrows techniques from M-estimation theory, it provides a novel and transparent methodology which enjoys significant practical applicability in situations where expert information is present. The potential of the approach is illustrated by a concrete actuarial application of tail parameter estimation for a heavy-tailed MTPL dataset with limited available expert information

    The optimal dividend barrier in the Gamma-Omega model

    Get PDF
    In the traditional actuarial risk model, if the surplus is negative, the company is ruined and has to go out of business. In this paper we distinguish between ruin (negative surplus) and bankruptcy (going out of business), where the probability of bankruptcy is a function of the level of negative surplus. The idea for this notion of bankruptcy comes from the observation that in some industries, companies can continue doing business even though they are technically ruined. Assuming that dividends can only be paid with a certain probability at each point of time, we derive closed-form formulas for the expected discounted dividends until bankruptcy under a barrier strategy. Subsequently, the optimal barrier is determined, and several explicit identities for the optimal value are found. The surplus process of the company is modeled by a Wiener process (Brownian motion

    Optimal dividend strategies for a catastrophe insurer

    Get PDF
    In this paper we study the problem of optimally paying out dividends from an insurance portfolio, when the criterion is to maximize the expected discounted dividends over the lifetime of the company and the portfolio contains claims due to natural catastrophes, modelled by a shot-noise Cox claim number process. The optimal value function of the resulting two-dimensional stochastic control problem is shown to be the smallest viscosity supersolution of a corresponding Hamilton-Jacobi-Bellman equation, and we prove that it can be uniformly approximated through a discretization of the space of the free surplus of the portfolio and the current claim intensity level. We implement the resulting numerical scheme to identify optimal dividend strategies for such a natural catastrophe insurer, and it is shown that the nature of the barrier and band strategies known from the classical models with constant Poisson claim intensity carry over in a certain way to this more general situation, leading to action and non-action regions for the dividend payments as a function of the current surplus and intensity level. We also discuss some interpretations in terms of upward potential for shareholders when including a catastrophe sector in the portfolio

    Randomized Observation Periods for the Compound Poisson Risk Model: Dividends

    Get PDF
    In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studie

    An asymptotical study of combinatorial optimization problems by means of statistical mechanics

    Get PDF
    AbstractThe analogy between combinatorial optimization and statistical mechanics has proven to be a fruitful object of study. Simulated annealing, a metaheuristic for combinatorial optimization problems, is based on this analogy. In this paper we show how a statistical mechanics formalism can be utilized to analyze the asymptotic behavior of combinatorial optimization problems with sum objective function and provide an alternative proof for the following result: Under a certain combinatorial condition and some natural probabilistic assumptions on the coefficients of the problem, the ratio between the optimal solution and an arbitrary feasible solution tends to one almost surely, as the size of the problem tends to infinity, so that the problem of optimization becomes trivial in some sense. Whereas this result can also be proven by purely probabilistic techniques, the above approach allows one to understand why the assumed combinatorial condition is essential for such a type of asymptotic behavior

    A Lévy insurance risk process with tax

    Get PDF
    Using fluctuation theory, we solve the two-sided exit problem and identify the ruin probability for a general spectrally negative Levy risk process with tax payments of a loss-carry-forward type. We study arbitrary moments of the discounted total amount of tax payments and determine the surplus level to start taxation which maximises the\ud expected discounted aggregate income for the tax authority in this model. The results considerably generalise those for the Cramér-Lundberg risk model with tax
    corecore